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ABSTRACT

We derive a formula for the viscous decay of long internal solitary

waves that propagate into a quiescent fluid in a two-layer model. The

result is analogous to Keulegan's (1948) formula for the viscous decay of

long surface waves. The requirement that the fluid ahead of the wave be

quiescent is important, and we show experimentally that the accuracy of the

formula decreases significantly if the internal waves are preceded by

faster-traveling surface waves.--
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1 Introduction and Analysis

Solitary water waves measured in laboratory wave tanks are known to

exhibit appreciable decay due to viscous boundary layers on the walls of the

tank. Keulegan (1948) developed an. approximate theory to predict this

viscous decay of surface solitary waves.

Long internal waves resemble long surface waves in may respects, and

Figure 2 of the preceding article (hereafter called I) demonstrates that

long internal waves also experience significant viscous dissipation. If the

pycnocline is thin, then the dissipation of long internal waves is even

stronger than that of long surface waves, because there is an additional

viscous boundary layer at the interface of the two fluids. Thus, to account

for the slow viscous dissipation of an internal KdV soliton, it is necessary

not only to make relatively minor changes in Keulegan's analysis of the

boundary layers on the walls of the wave tank, but also to account for the

dissipation at the interface.

The purpose of this paper is to study the viscous dissipation of an

internal KdV soliton as it propagates down a laboratory wave tank. The

analysis is based on the original work of Keulegan (1948). The major

assumptions are the following.

i) There are two fluids of different densities in a stably stratified

configuration bounded below by a rigid horizontal bed and above by a

free surface (see Figure 1 of I).

Ii) The inviscid flow is that of a two-dimensional Internal wave in the

form of a KdV soliton, traveling with a constant speed c.

Consequently we may write 9/at - -c 9/ a&, where C - x-ct. Moreover,
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the viscous time-scale is assumed to be slow in comparison with the

KdV time-scale.

iii) Nonlinear effects may be neglected in the thin viscous boundary layer,

even though they are important in establishing the inviscid flow.

iv) All streamlines may be considered flat and horizontal for the purpose

of the viscous analysis.

v) Only shear parallel to the interface (which is now considered flat) is

of consequence.

vi) Diffusion of species is neglected, as is compressibility.

With these assumptions, one may show that the larger and smaller roots

of

(cZ/g)2 - (c2/g)(hI + h2) + h, h2  - 0 (1)

define the propagation speeds of the long surface and Internal waves,

respectively, in the linear inviscid limit (see I or Lamb, 1932, section

231). Here g is the constant gravitational force, -1-p/P2 is the

dimensionless density difference, and hl,h2 are the upper and lower fluid

depths, respectively. We assume that the two sets of roots are distinct,

which is guaranteed if either A f 1 or hl V h2. Let ci denote a solution of

(1) corresponding to an internal wave.

The linear theory also defines the horizontal velocities in the two

layers in terms of the displacement of the interface. In dimensional

variables, the velocities of the lower and upper fluids, respectively, for a

long internal wave are
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U2(X-t) ~ Zn(x- cit) , U ~ - - l- in(x- cit)

(2)

where n is the displacement of the- interface. These provide the "outer"

Inviscid solution, which drives the viscous boundary layer at the interface.

The KdV equation governs the evolution on the next time-scale of the

long Internal wave traveling to the right. The dimensional equation is

.C1L+ t 0 (3)

C:Il an + -'z + in Jz + i IL . , 3
1 at ax ax ax 3

where

h1(p2hj - p2h2 + 2plh 2) + p2(h2 - h1)(cj/g)
pjh 1(h1 + h2)

3
2hjh 2(hj +h2) pl[h1 - (cf/g)]

' [h 1(h. -h2)(P2hj -P2h2 +2ph 2 ) plhlh2  (c) P2(hp -h 2 .)2
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" " 4h,(h + h2) p, kl! -9/ - "

h1(2h2 - 6Ahlh 2 - 3h2 ) h h) ]
3.h2(2h, h2)

In the Boussinesq limit (A * 0, ga finite). ci + gAh1h2/(h1 + h2), a 1 1,

+ 3 [hjl- h-J], y h1h2/6, and (3) reduces to equation (12) of I.

As a further check on the coefficients in (3), we note three limits in

which (1) and (3) reduce to the dimensional form of the KdV equation for

surface waves on a homogeneous fluid:

C2  * gh ,

at ax 2 h ax 6 ax

These limits are:

i) A .0 o*c (h1+h2), ... *

g h2  h, + h2

C2  (5)
1i) Pi + 0, -+ h2 (

9

tii) h1 . 0, h2 .
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Djordjevic and Redekopp (1978) also derived a KdV equation for long internal

waves without the Boussinesq limit. Their rr.ults differ from those in (3)

except in the limit A * 0, because they assumed a rigid lid on top, whereas

(3) is based on having a free surface there. The boundary condition at the

upper surface is unimportant only if .< 1.

We turn now to the problem of the viscous boundary layer at the

interface. In dimensional form, the viscous equations above and below the

dividing streamline are

- ci (51- ul) " v1 (Oi- u) z > 0

(6)

-ci 0 2-u2) " v-02 ( u2  ) , z < ,

where T - x - cit, ul(C), u2(&) are the inviscid horizontal velocities in

the upper and lower fluid, al(4.z). 2̂ (&.z) are the solutions of the viscous

equations in the two layers, and vi, v2 are the two kinematic viscosities.

The boundary conditions are that

01 ul as z + + .

(7a)

02 * U2  aS Z * -,
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and at z 0,

u a 2  ILIz (7b)

where pl, P2 are the two dynamic viscosities. The solutions of (6) may be

written in the form of the Duhamel integral solution of the heat equation:

al "ut" ' FIE& + (cz 2/4v 1 X2)] exp(- d2) dx
0

(8)

u2 " U2  F2 19 + (CZ 2/4v 2 x2 ) ] exp(-, 2) dx
0

where

FIlC) -2(1 1- 7MCIO U2(0
VIlV2)1/ 2 + P2lVI) 2 [ll )

(9)

F2(4) • - UAWV2)1  * alvl/Z LUi() " u2(O))

and we require that ul(C), u2 () be localized enough that the integrals in
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(8) converge.

Next weneed an expression for the rate of energy loss due to viscous

effects at the interface. Consistent with assumption (v) above, the local

dissipation function near the interface in each layer is

tj(fZ) - i j ' i = 1,2 (10)

The total rate of dissipation due to the boundary layer at the interface is

obtained by integrating #j over the volume of that boundary layer.

Integrating once by parts and using (6), (7) shows that the rate of energy

loss due to the boundary layer at the interface is

dE = W (u1 -u2 )[Pj(a j/az))Iz 0 d& j 1= or 2 (11)dt " '3 j z=

where W is the total width of the channel. Keulegan (1948) pointed out that

(11) represents both energy dissipation in the boundary layer and kinetic

energy left behind in the channel. We will discuss the latter effect again

in Section 2.

Energy is also lost in the boundary layers on the walls of the wave

tank. Keulegan (1948) showed that the rate of energy loss in each of these

boundary layers is

dt (Az) uou(au/ay) dC , (12)
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where az is the width of the layer, uo is the inviscid velocity outside the

layer, and the shear stress is evaluated at the wall. The total rate of

energy loss is obtained by combining these separate contributions, including

(11).

We now refer specifically to .a. soliton solution of (3) in order to

define the inviscid velocitiess in (11) and (12). The expression for the

total rate of energy loss per width of tank of a KdV internal soliton is

complicated, but for A + 0,

dE 4/" p2A(g)51'v 112 t I7 "
- 31 hlhKl21]1/4

.+ h2 + + - (h, h2)
2  (13)I 2

where i s the maximum wave amplitude, W is the tank width and we have

assumed v1 - v2 - v (because A << 1). Of the three terms added together in

(13), the first represents the energy loss from the lower fluid due to the

boundary layers at the tank walls, the second represents a similar loss from

the upper fluid, and the third represents the energy loss at the interface.

In the particular set of experiments in which we will test this theory

(hi a 45 cm, h2 - 5 cm, W - 39.4 cm), about 1/3 of the total energy loss

occurs at the interface.

The total energy per unit width of tank for an internal KdV soliton

With A < 1 Is (from Keulegan, 1953)
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8p2 Aghh Ij /2(14)
E (14)

33/2 Ihi- hal z'2

and the energy loss given by (13) comes entirely from this source. Between

(13) and (14), one obtains an equation for the slow decay of a KdV soliton

as it propagates over long distances:

( h I - h 21 1/4 (Ih -h2i - 14 S
hjh2 / - K (h1h2)i/Z • (15a)

Here no is the initial wave amplitude, and A is its amplitude after it has

travelled a distance S. If A (( 1,

K 1/2 h2 I h (h, +h2)21
12(gA)11  (h, +h2)314  h 2 h 2hlh2  (lb

in the general case (0 A 41),

K (cf/g)31
4 I/$1/Y11 (hlh 2)3

1

12/7 g1/1 h, -h211 " [(1 -A)(cf/g) 2 + A(h1 -cf/g)
2 ]

x +2h 2 )[h, (Cf/g))2 V21/2 +2h 1(1 - a) v1/2+[(14-) - +W
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2//3

+ _ _ _V2 [h, + h2 - (c(/g)52

where c?/g is the smaller root of (1) and (o,y) are given below (3). In the

limit A + 0, cj/g + (AhlhZ)/(hl +. h2), and (15c) reduces to (15b).

Moreover, in the three limits given in (5), (15) reduces to the results of

Keulegan (1948) for the viscous decay of a surface solitary wave.

Koop and Butler (1981) used an approximate version of (15) that amounts

to replacing (7b) with

U, -0, u2 0 as z 0. (16)

For a << 1, their method gives the correct answer if hi - h2, but

overestimates the damping due to the interfacial boundary layer for any

hi 0 h2. The special case in which their method gives the correct decay

rate (hl - h2) happens to be the configuration in which the coefficient of

the nonlinear term is (3) vanishes, so that there is no solitary wave.
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2 Comparison with Experiments

The experimental data that we will use to test this theory are those

shown in Figure 2 of I. Recall that in those experiments, a piston at one

end of a long wave tank generated both surface and internal waves, which

then propagated down the tank. A vertical plate 18.8 m from the downstream

edge of the piston was carefully lowered into the water after the surface

waves had passed, so that the much slower internal waves could be measured

without disturbance. The fluid depths were hl - 45 cm, h2 - 5 cm, and the

density difference was a - O.',-.

Based on Figure 3 of I, the lead waves measured at each of the last

five stations may be considered a KdV soliton, to within experimental error.

Consequently, we may use the lead wave at x/(hlh2)1/2 - 33.3 as initial data

for (15), which then predicts the amplitude of the lead wave at the next

four stations. As shown in Figure la, (15) predicts far more decay than is

observed. Whereas French (1969) found that Keulegan's (1948) formula for

surface waves predicted the attenuation to within about 12%, errors up to

30% are shown in Figure la.

Another way to compare (15) with these data is shown in Figure lb.

Here we consider the lead waves measured at x/(hlh2)1/2 - 33.3, 60, 100, and

151 to be initial data for (15) in four separate tests, and ask for the wave

amplitude predicted at x/(hlh2)1/2 - 191. In this graph, the observed wave

amplitude is always the same ('-n 0.47 cm). Here (15) predicts too much

decay for long propagation distances and too little for short distances.

Clearly (15) by itself is inadequate to explain the observed attenuation of

internal solitary waves, even though it is directly analogous to the much
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more successful formula of Keulegan for surface solitary waves.

We propose the following conjecture to resolve this paradox. The lead

wave in Figure 2 of I was not propagating into a quiescent fluid, as

required by (15). It was preceded by the faster surface wave (not shown in

the figure). As the surface wave propagated, it lost energy both by viscous

dissipation and by leaving kinetic energy in the boundary layers it

generated. This residual kinetic energy subsequently was lost by the

boundary layers only on a (very slow) diffusive time scale. Therefore the

fluid into which the internal wave propagates was not quiescent, but had a

mean motion down the tank. Following this reasoning, the internal soliton

should have decayed less than predicted by (15) while it propagated down the

tank and more than predicted by (15) as it propagated back up the tank (and

met not only the residual boundary layer of the faster surface wave but its

own residual boundary layers as well). The relative position of the

reflecting wall is shown explicitly in Figure 1, and all of the data are in

qualitative agreement with this hypothesis.

-Thus, we conjecture that (15), which requires that the internal soliton

propagate into a quiescent fluid, does not predict the observed decay of the

internal solitons in Figure 2 of I because the residual boundary layers from

the faster surface wave are still active. Unfortunately, this conjecture

leaves us without any means to predict internal soliton amplitude

realistically. However, it does emphasize the importance of these residual

boundary layers in wave tank experiments on solitary waves. In particular,

t attempts to measure experimentally the phase shifts of solitons due to their

interaction probably should be regarded as inconclusive until these residual

boundary layers have been taken into account properly.
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The theoretical portion of this work constituted the M.S. thesis of

the first author while at Clarkson College, Potsdam, NY. This work was

supported in part by the Office of Naval Research and by the National

Science Foundation.
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Figure Captions

1. Decay of amplitude of the lead soliton of Figure 2 of I as a function of

propagation distances: (a) Distance measured from initial location at

x/(hih 2)1/2 - 33.3: 6, measured; _ predicted by (15);

(b) Distance measured from final location at x/(hlh2)l/2  191: 'a,

measured; 0, predicted by (15).
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